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Abstract—In recent years, there has been a rapid increase in 
the size and number of medical image collections. Thus, the devel­
opment of appropriate methods for medical information retrieval 
is especially important. In a large collection of spine X-ray im­
ages, maintained by the National Library of Medicine, vertebral 
boundary shape has been determined to be relevant to pathology 
of interest. This paper presents an innovative partial shape match­
ing (PSM) technique using dynamic programming (DP) for the 
retrieval of spine X-ray images. The improved version of this tech­
nique called corner-guided DP is introduced. It uses nine landmark 
boundary points for DP search and improves matching speed by 
approximately 10 times compared to traditional DP. The retrieval 
accuracy and processing speed of the retrieval system based on the 
new corner-guided PSM method are evaluated and included in this 
paper. 

Index Terms—Corner-guided, dynamic programming, image 
retrieval, National Health and Nutrition Examination Survey 
(NHANES II), partial shape matching. 

I. INTRODUCTION 

THERE has been growing interest in content-based index­
ing of biomedical images, especially for developing an 

automated or a computer-aided interactive medical information 
retrieval system. A digital archive of 17 000 cervical and lum­
bar spine X-ray images from the second National Health and 
Nutrition Examination Survey (NHANES II) is maintained by 
the Lister Hill National Center of Biomedical Communications 
at National Library of Medicine (NLM) at the National Insti­
tutes of Health (NIH). An interactive retrieval system for these 
X-ray images is important for research purposes, including find­
ing pathological exhibits in a large survey collection, and educa­
tion purposes including training medical students, etc. Another 
very important application is to provide reference to radiolo­
gists to assist diagnosis. Research work has been done to index 
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Fig. 1. X-ray image with the superimposed blue (or dark dotted line in black 
and white) shape contour. Shape contour has been proven to be the best feature 
to use. 

and retrieve these images. We have developed query-by-sketch­
and query-by-example-based methods for shape-based image 
retrieval, which offers visual search of these images. The de­
velopment of a more powerful and user-friendly system is an 
ongoing project at the NLM. The latest revision of this system 
supports hybrid image and text queries [1], [2]. 

Content-based image retrieval (CBIR) remains an active re­
search area seeking representation methods and retrieval algo­
rithms for color, shape, and texture. Fig. 1 shows a spine X-ray 
image with the segmented shape contour. As shown, spine 
X-ray images generally have low contrast and poor image qual­
ity. In these images, no meaningful texture information exists. 
The shape, however, effectively describes various pathologies 
identified by medical experts as being consistently and reliably 
found in this image collection. About 4500 cervical and lumbar 
shapes have been segmented from over 900 images in the collec­
tion using an active contour-based algorithm that uses orthogo­
nal curves [3]. Despite the automated nature of the segmentation 
algorithm, manual intervention was occasionally necessary due 
to poor image quality. 

Shape matching is a well-explored research area with many 
shape representation and similarity measurement techniques 
found in the literature [4]–[15]. Shape representation methods 
include Fourier descriptors [4]–[6], polygonal approximation 
[7], invariant moments [8], [9], B-splines [10], [11], deformable 
templates [12], and curvature scale space (CSS) [13], [14]. Most 
of these techniques were developed for whole shape matching, 
i.e., closed planar curve matching. The CSS shape representa­
tion method has been selected for moving picture experts group 
(MPEG)-7 standardization [13], [14], [16]. However, based on 
the curvature zero-crossing, the CSS method is more suitable 
for shapes with distinct curvature variations, such as leaf shapes 

1089-7771/$25.00 © 2008 IEEE 



101 XU et al.: A SPINE X-RAY IMAGE RETRIEVAL SYSTEM USING PARTIAL SHAPE MATCHING 

Fig. 2. Radiologist marked 9-point model for vertebral shape description. 
Points 8 and 9, if not coincident with points 3 and 6, respectively, indicate the 
existence of osteophytes. 

than for smooth shapes with subtle curvature variations. Fourier 
descriptor has proven to be more efficient and robust than is the 
CSS in a review of shape representation and description tech­
niques [15]. But, as mentioned in [15], Fourier descriptor was 
not suitable for partial shape matching. 

Our previous research work focused on the whole shape 
matching for spine shapes [17]–[19]. Several different methods 
including Fourier descriptors, polygonal approximation, geo­
metric global shape properties (such as eccentricity, elongation, 
etc.), and invariant moments were implemented and evaluated 
for spine X-ray retrieval. However, whole shape matching tech­
niques provided relatively low retrieval accuracy in retrieving 
similar pathological spine shapes. 

For spine shapes, pathologies found on the spine X-ray im­
ages that are of interest to the medical researchers are gener­
ally expressed along the vertebral boundary. These pathologies 
include anterior osteophytes (AOs), intervertebral disc degen­
eration, and resulting disc space narrowing, subluxation, and 
spondylolisthesis. Among them, work presented in this paper 
focuses on AOs that show up on the two anterior “corners” in 
the sagittal view, and the deformation appears as a protrusion, 
as shown in Fig. 2. 

In terms of AO pathology, therefore, there are critical intervals 
along the vertebral boundary that the radiologist would focus on 
rather than the whole shape. This indicates the main drawback 
of the whole shape matching: certain parts on the vertebra 
shape that are not of pathological interest may obscure the 
differences between critical regions, and thus, hinder accurate 
retrieval. 

Partial shape matching (PSM) was investigated as an alter­
native to whole shape matching and to enable retrieval specific 
to the pathology on the anatomy of interest. In general, there 
is very little information in the literature on the application of 
partial shape matching for retrieval of medical images. It allows 
querying on some specific intervals along the vertebral bound­
ary shape and searches for the best matching intervals on other 
whole shapes. This PSM concept theoretically addresses the 
same problem as region-based image retrieval, which divides 
the whole image into several regions and weighs regions on 
their significance [20], [21]. 

PSM also provides a way to deal with occlusion and dis­
tortion when comparing two incomplete shapes or distorted 
shapes [22]–[26]. Different shape representations such as wedge 

wave, inflection points, and line segments were used. The recent 
contribution by Petrakis et al. [25] presented an approach for 
open shape matching using DP. Inflection points served as inputs 
to the shape representation method. The extracted shape features 
included the length, the area, and the rotation angle. DP selects 
the most promising candidate points to merge in its search for 
the match path with the least cost (highest similarity). Allowing 
merging points made this approach capable of addressing the 
matching problems in the presence of occlusion and distortion. 
However, inflection points are not suitable for rectangular spine 
shapes since a rectangular shape does not have a significant num­
ber of inflection points. Gdalyahu et al. constructed a syntactic 
shape representation, whose primitives were line segments and 
whose attributes were length and absolute orientation [24]. The 
search was also achieved by using DP. 

Arica et al. introduced a perceptual shape descriptor [26]. 
Each point on the boundary was represented by the moments of 
the angles, each of which was formed by a pair of the bearings at 
a boundary point. The limitation of this method is that it requires 
uniformly distributed shape data points. Shape data points for 
our application are not equally distributed because dense data 
points are needed to better describe the pathological details of 
the region of interest, e.g., the AO regions shown in Fig. 2. In 
other words, the AO regions need to be represented with more 
data points than other regions on a spine shape. 

More often, shapes are represented by different numbers of 
points, different data point distributions or data sample spacing, 
which is the case for the spine shapes in our database. Also, 
noise may occur during the process of contour segmentation. 
Thus, the capability of merging data points that DP possesses is 
preferred. 

Based on the perceptual shape descriptor in [26], we de­
veloped a multiple open triangle shape representation method, 
which does not require equally distributed shape data points. 
A line segment method with two old attributes (length and ab­
solute orientation) [24] and one new attribute (relative orienta­
tion) was also implemented for comparison. The DP was imple­
mented for both shape representations as our initial PSM work 
[27]. 

A high computational requirement is a significant drawback 
of DP, especially for a large medical image database. Based on 
the rectangular nature of spine shapes and the 9-point landmark 
model, corner-guided PSM using DP is proposed and presented 
in this paper. Limiting the possible search regions to four corners 
dramatically increases the search speed. An innovative approach 
has been taken to modify the traditional DP to perform matching, 
starting from a corner, which is a point in the middle of the 
whole matching segment, rather than from the first point of the 
matching segment. 

In this paper, we will start Section II with an introduction of 
the nine point landmark model that radiologists use to describe 
vertebral shapes. We will then introduce our algorithm capable 
of automatically locating the 9-point model. Section III will 
focus on PSM and the improved corner-guided PSM using the 
modified DP. The retrieval system based on PSM as well as the 
retrieval performance evaluation will be discussed in Section IV. 
Our conclusions will appear in Section V. 
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II. 9-POINT MODEL 

Fig. 2 shows a nine morphometric landmark-point model 
schematic. Points 8 and 9 indicate the existence of AO. For 
normal vertebrae, points 8 and 9 will coincide with points 3 and 
6, respectively. The 9-point model helps radiologists and bone 
morphometrists in marking relevant pathology on spine X-ray 
images. The semantic relevance of the 9 points in the sagittal 
view is as follows. 

1) Points 1 and 4 mark the upper and lower posterior 
“corners” of the vertebra, respectively. 

2) Points 3 and 6 mark the upper and lower anterior “corners” 
of the vertebra, respectively. 

3) Points 2 and 5 are the median along the upper and lower 
vertebra edge. 

4) Point 7 is the median along the anterior vertical edge of 
the vertebra. 

5) Points 8 and 9 indicate the presence of the upper and 
lower anterior osteophytes, respectively. These points are 
typically marked at the osteophyte extremities. 

We have developed an algorithm for automatic localization 
of these points by applying heuristics based on their semantic 
relevance [28]. This auto-localization algorithm provides the 
corner information for our proposed corner-guided PSM using 
DP, and thus, is an essential part of the retrieval system. The 
corner detection part of the 9-point localization algorithm is 
included as follows, and more details can be found in our earlier 
paper [28]. 

Curve evolution technique [29], [30] was implemented to 
reduce the number of data points while keeping the most signif­
icant ones. This is achieved by iteratively comparing a relevance 
measure expressed in (1) of all remaining vertices on the shape 

|(β(s1 , s2) − 180)| l(s1)l(s2)
K(s1 , s2) =  (1)

l(s1) +  l(s2) 

where β(s1 , s2) is the angle between two adjacent line segments 
s1 and s2 , and l(s1) and l(s2) represent the normalized length 
(to the total length of the whole shape) of s1 and s2 , respec­
tively. Higher relevance value means that the vertex has larger 
contribution to the shape of the curve. The angle β(s1 , s2) was 
calculated as the outer angle between two line segments. The 
curve evolution stopped when the number of remaining vertices 
was down to 20. The bend angle, as illustrated in Fig. 3 was then 
calculated for each of these 20 points, and it was calculated in a 
way so that the clockwise turn gives a negative angle, whereas 
a counterclockwise turn gives a positive angle. Thus, only the 
vertices with a positive bend angle can be a corner. The corners 
were detected according to the following rules. 

1) Vertices with a negative angle will be removed. 
2) If there are two adjacent vertices and both with a positive 

bend angle, the vertex with the smaller bend angle will be 
removed. 

3) If there are more than four points left, sequentially connect 
all remaining vertices, recalculate their bend angles, and 
then repeat steps 1 and 2. 

The auto-localization algorithm has been tested on a subset 
of 250 vertebral shapes from those marked by a board certified 

Fig. 3. Bend angle. 

Fig. 4. Auto-localization of 9-point model. The crosses represent the expert 
marked points and the circles represent the points our algorithm detected. 

radiologist. An evaluation was done by comparing automatic 
localization results with that of expert marked points. As shown 
in Fig. 1, spine contours in X-rays typically have a broad edge. 
This inevitably induces the slight difference between the visual 
contours on the images and the segmented spine shapes, even 
though the segmented shapes well retain the spine silhouettes. 
Fig. 4 shows two samples of the 9-point auto-localization al­
gorithm’s performance with one 7-point (without AO) and one 
9-point (with AO). The crosses represent the points marked by 
the radiologist on the X-ray images and the circles represent 
the points localized by the algorithm on the spine shapes. As 
we have mentioned about the possible edge shift caused by the 
broad edge, the two sets of nine points are not identical. How­
ever, the algorithm performs fairly well in detecting the AOs 
and the corners. The minimum L2 distance between the two 
sets of nine points was calculated to evaluate the accuracy of 
the algorithm. For 93% of the 250 tested shapes, the minimum 
distance was below 20 pixels, which we consider to be very 
impressive. 

III. PARTIAL SHAPE MATCHING 

A. Shape Representation Methods 

1) Line Segments: A line segment is formed by connecting 
two adjacent points on the shape contour. Suppose a shape has N 
points: if it is closed, it has N line segments; if it is open, it has 
N − 1 line segments. Besides the two shape features (length 
and absolute orientation) used in [24], relative orientation is 
proposed as the third feature. They are described as follows. 

1) Length: 2-norm of the line segment. 
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2) Absolute orientation: The angle between the abscissa axis 
and the line segment, which has the same length as the 
original line segment but starting from the original point. 

3) Relative orientation: Bend angle between two adjacent 
line segments. 

Based on these shape features, we can define the similarity 
between two line segments ak and a�l . We denote the features of 
ak , a —absolute orientation and length— by (θ, l) and (θ�, l�),l

respectively. The reference feature vectors are calculated for 
both the query and the object shape: (θ0 , l0) and (θ0

� , l0
� ), which 

are the mean of both features of all the line segments on either the 
query or the object shape. In order to obtain the scale-invariant 
length similarity measurement, the global alignment, which is 
the overall average scale ratio between the query and the object 
shape, will be calculated and denoted as c0 = l0/l0

� . Then, with 
c = l/l�, the length similarity can be expressed as 

24cc0 + (c2 − 1) c0 − 1 
Sl(l, l�|l0 , l0� ) =  ( ) (2)2(c2 + 1)  c0 + 1  

that calculates the difference between the overall scale factor and 
an individual scale factor as the distance in terms of length [24]. 

The absolute orientation similarity is 

Sθ (θ, θ�|θ0 , θ0
� ) = cos[(θ − θ�) − (θ0 − θ0

� )]. (3) 

The relative orientation similarity is 

Srel = cos(θrel − θ� (4)rel). 

During the DP search process, the cost is used instead. For 
each shape feature mentioned earlier, the cost is calculated as 
1.0−similarity. This similarity/cost relationship is applied to the 
multiple open triangle shape representation method as well, and 
is described in the next section. The costs for each feature are 
denoted by Cl , Cθ , and Crel . Thus, the total cost is defined as 
the summation of the three 

C = Cl + Cθ + Crel. (5) 

2) Multiple Open Triangles: An open shape can be ex­
pressed as M = M1 ,M2 ,M3 , . . . ,MN , where Mi is the ith 
point on the shape with the coordinate (xi, yi). From the sec­
ond point on, each point has at least one previous point and 
one subsequent point. An open triangle is formed by connecting 
the previous point to the current point and the current point to 
the subsequent point. For those points that have more than one 
previous point, another open triangle is formed by connecting 
Mi−2 to Mi and Mi to Mi+2 . Therefore, each data point can 
be represented by multiple open triangles, as shown in Fig. 5. 
In our application, we set K = 3  as the largest number of such 
open triangles associated with one point. 

As shown in Fig. 5, point M2has only one open triangle; point 
M6 could have up to five open triangles, but only the first three 
open triangles, as shown in the figure, are used to represent this 
point. The angle θ associated with an open triangle is also illus­
trated in Fig. 5. The angle is actually the supplementary angle of 
the relative orientation we calculated for the line segments. The 
lengths of the two sides of an open triangle are also calculated, 
as the features and the length similarity is calculated in the same 

Fig. 5. Multiple open triangles of a partial shape with 11 data points. There is 
only one open triangle associated with M2 . There are possibly five open triangles 
associated with M6 . Each open triangle can be measured by the average length 
of the two line segments and the angle between them. 

Table I
 
SEARCHING TABLE FOR TRADITIONAL DP
 

way as for the line segment representation method. The overall 
angle similarity for each data point is calculated as 

1 
i=n 

Sθ = cos(θi − θi
� ) (6) 

n 
i=1  

where n is the number of the open triangles. For example, when 
using three open triangles to represent one data point, the overall 
angle similarity is the average of the three individual angle 
similarities (one for each open triangle). 

B. Traditional Dynamic Programming 

DP is a powerful tool for finding a desired path through all 
the possible paths. In partial shape matching, DP finds the best 
matching path with the minimum cost. Spine shapes in our 
database have different number of points and different point 
distributions. DP is desired because of its capability of merging 
data points. 

Traditional DP searching strategy is explained as follows. 
Suppose that there is an open shape query A consisting of five 
points, and an object shape B, which is a closed shape consisting 
of seven points. In searching for the match of query A to shape 
B, the algorithm builds a DP table (Table I), where rows and 
columns correspond to the points of A and B, respectively [25]. 
The number of columns of the DP table is twice the number of 
points on B, which ensures that every point on B could be a 
starting matching point for a complete match by having subse­
quent points. DP search starts from the cells (marked as S in 
Table I) at the bottom row, which is denoted as the “Initialization 
Area” and proceeds upward and to the right. Each cell of the 
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Fig. 6. Merging process. The merging cost associated with each merged point 
is measured in (7). The new line segment is formed as a straight line connecting 
points 1 and 4 if points 2 and 3 are merged (removed). 

table contains the previous matching node location and the total 
cost associated with the matching path up to this current cell. 
After filling out the top row, which is the “Termination Area” 
(marked as T in Table I), all the possible matches of shape B to 
query A have been explored, and are able to trace back starting, 
from the termination area. The matching path with the minimum 
cost is finally picked to give the best match. 

During the process of filling the DP table, merging of the data 
points occurs if a lower cost can be obtained. For example, if the 
cost of matching points 2 and 3 on query A with points 4 and 
6 on shape B, respectively, is smaller than the cost of matching 
points 2 and 3 on query A with points 4 and 5 on shape B, 
the DP algorithm will choose to merge point 5 on shape B to 
achieve a lower cost. 

The total cost includes the cost contributed by the correspond­
ing shape features and a merging cost if any merging occurs. 
The merging cost serves as the penalty for removing a point that 
is actually on the shape, since it is not guaranteed to be noise. 
The merging cost is measured as the sine value of its bend an­
gle or relative orientation, which reflects the significance of the 
merged point. When more than one point is merged, the total 
merging cost is the sum of the merging cost associated with each 
merged point, as shown in (7) 

Cmer  = sin(θrel1 + θrel2 + θrel3 + . . .). (7) 

For instance, as shown in Fig. 6, suppose there are four points 
and the matching path is from point 1 directly to point 4, 
which means points 2 and 3 are removed. Then, the merg­
ing cost associated with this matching path is computed as 
Cmer  = sin(θrel2 + θrel3). 

A traditional DP has been implemented for both line segment 
and multiple open triangle shape representations, and has been 
tested on 15 shapes with around 100 points on each shape [27]. 
The results showed that multiple open triangle representation 
performed better than the line segment representation, which 
accords with the fact that multiple open triangle method provides 
more information about the contribution and the importance 
of a point to the curve. DP is very computationally expensive 
and sensitive to noise. Therefore, for reasons of efficiency, a 
limit was set on the maximum number of consecutively merged 
points. However, even with this limitation, DP still turned out 
to be a long process by trying every point on the object shape as 
a possible starting matching point. Approximately, 1 min was 

Table II
 
CORNER-GUIDED DP SEARCHING TABLE
 

required to find the best matching path for one shape with around 
100 points. This made it impractical to integrate the algorithm 
for online search of a large medical image database. 

C. Corner-Guided DP 

As we have addressed in Section II, the vertebrae shapes tend 
to be rectangular with nine critical landmark points that help 
indicate pathology. Partial shape matching allows querying on 
any part that the user is interested in. Since pertinent pathology 
(AO) occurs at the “corners,” we can use PSM at this interval 
for retrieval. 

The localized nine points on vertebral boundaries are stored 
in a database for run time use. Storing these data in the database 
helps to speed up corner-guided DP search. 

The traditional DP needs to be modified when guided by the 
corners. As a first step, the “corners” on the query shape are 
aligned with those on the target shape. This limits the similarity 
search to the boundary segment at the corners. Thus, for a whole 
vertebral shape with four corners, four potential partial matching 
segments will be identified, such that each contains one corner. 
Among these four matching segments, one with least cost is 
selected as the most similar matching part on the current object 
shape. 

Because of the better performance, multiple open triangles 
were chosen to represent the shapes for corner-guided DP. 
Table II illustrates corner-guided DP, which still has the same 
layout as the traditional DP table except for two termination 
areas. Suppose the query A has seven points and the object 
shape B has nine points. Instead of starting from the initializa­
tion area in Table I, corner-guided DP first matches the corners, 
indicated as “C” in Table II on both the query and the object 
shape, which is actually a point in the Computation area in 
Table I. Starting from “C,” DP search is performed in both di­
rections simultaneously and independently, until reaching the 
termination areas. At each cell, the total cost is computed as in 
(8), and compared with the previous lowest cost to determine 
which path to keep 

Ctotal = W1 × Cl + W2 × Cθ + W3 × Cmer  (8) 

where Wi is the adjustable weight for the cost of each feature. 
The outline of the corner-guided DP search for one corner is 

described as follows. 
1) Search for one line segment on both sides of the targeted 

corner, which forms an open triangle. Calculate the cost 
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of each individual possible matching path and get the first 
best matched open triangle with the lowest cost. For exam­
ple, in Table II, points 4 and 7 on shape B are chosen to be 
the best match to points 1 and 4 on query A, respectively. 

2) If one side reaches the termination area first, go to 
Step 4; otherwise, search for the next one line segment 
on both sides. The new cost part is produced by matching 
the second open triangle of the corner and the first open 
triangle of the two points selected in Step 1. 

3) If one side hits the termination area first, go to Step 4; 
otherwise, search for the next one line segment on both 
sides. The new cost part is produced by matching the third 
open triangle of the corner, the second open triangle of the 
two points selected in Step 1, and the first open triangle of 
both points selected in Step 2. Since the maximum number 
of open triangles associated with one point is limited to 
3, this step completes the matching of all possible three 
open triangles associated with the corner. 

4) Take each side of the corner and continue the matching 
according to the traditional DP. Each side stops indepen­
dently when it reaches the termination area. The whole 
matching finishes when both sides reach the correspond­
ing termination area. 

Corner-guided DP selects only four best matching paths for 
one individual object shape. However, the traditional DP selects 
a best matching path for every point on the object shape. Even 
though the time of completing a best matching path varies from 
point to point, the assumption that the time is equal can be 
made statistically. Thus, suppose an object shape has N points, 
the corner-guided DP will be N/4 times faster than the typical 
DP. So the more points the object shape has, the more efficient 
the corner-guided DP is compared to the traditional DP. This 
is a significant improvement, especially when retrieving images 
from a large database. 

IV. SYSTEM, PERFORMANCE, AND EVALUATION 

Fig. 7 shows the user interface of the retrieval system im­
plemented in Matlab. “Load query” allows the user to select a 
spine shape from the database, which is shown in blue (solid 
line). “PSM select” allows the user to specify a specific region 
of interest on the whole shape, which is then highlighted in red 
(solid line with dots). The system provides two retrieval meth­
ods: corner-guided Procrustes [31] distance and corner-guided 
PSM with DP by using multiple open triangle representation. 
The Procrustes method performs a linear transformation (trans­
lation, rotation, and scaling) on one shape to find the best match 
between two shapes. Suppose (x, y) and (x , y�) are n bound­
ary point coordinates of shapes of A and B, respectively. The 
Procrustes distance is then represented by (9), where shape A is 
translated by (Tx, Ty ), scaled by S, and rotated by θ 

     
n S · cos α − sin α Tx xi x

2 ∑ ∣ i ∣ 
P = ∣ sin α S · cos α Ty  yi

 −  yi 
�  ∣ . 

i=1 0 0 1 1 1
A B 

(9) 

Fig. 7. System user interface. Users are allowed to select a query shape from 
the database and to highlight the partial shape as the region of interest. 

The drawback of the Procrustes distance measure is that it 
requires the same number of points on the two partial/whole 
shapes. For corner-guided PSM method, the system provides a 
set of default values for the weights shown in (8), and also, the 
option for the user to specify different weights if so desired. A set 
of 801 cervical shapes and 972 lumbar shapes segmented from a 
total of 400 images has been chosen for performance evaluation. 
We used two interior corners of each of these 1773 shapes for 
study. These 3546 corners were classified as having server, mod­
erate, or slight/normal AO pathology. Approximately 23.54% 
of these corners were considered with AO pathology (server or 
moderate). The rest of them were considered nonpathological. 
Ten queries (five cervical and five lumbar) were chosen, and the 
best 15 matches to each query were retrieved for study. Human 
relevance judgments were employed to evaluate the effective­
ness of the two methods. Specifically, three human reviewers 
inspected the retrieval results of a query, and judged whether it 
was a similar match to the query. 

Fig. 8 shows the retrieval results of a partial query using 
corner-guided PSM, while Fig. 9 gives the retrieval results of the 
same query using corner-guided Procrustes distance. As shown, 
corner-guided PSM performs better in detecting the details of the 
angle changes of the query. Since DP performs shape matching 
based on multiple open triangles, it extends the matching path 
line segment by line segment. Procrustes treats the partial query 
as a “whole shape” and performs the alignments globally to 
find the minimum distance. Thus, theoretically, DP is superior 
to Procrustes in detecting the details. Furthermore, DP allows 
merging data point and does not require the same number of 
points to match two partial shapes. This also enables DP to 
overcome noise on the contour by merging/removing noisy data 
points. Procrustes distance requires the same number of points 
to match the two shapes, and thus, cannot deal with noise or 
different point distributions. Fig. 10 shows the retrieval results 
of another query using corner-guided PSM. 
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Fig. 8. Matching results by using the corner-guided PSM. The system re­
trieved 15 similar shapes from the database. Based on the human judgment and 
comparing with other shapes in the database, the system successfully retrieved 
the top 15 similar shapes. 

Fig. 10. Matching results of a different query using corner-guided DP. The 
system retrieved 15 similar shapes from the database. Based on the human judg­
ment and comparing with other shapes in the database, the system successfully 
retrieved the top 15 similar shapes. The retrieval result seems to be slightly 
better than the one shown in Fig. 8. 

Fig. 9. Matching results by using corner-guided Procrustes distance measure. 
The system retrieved 15 similar shapes from the database using the same query 
shape as the one shown in Fig. 8. Based on the human judgment and comparing 
with other shapes in the database, the system incorrectly retrieved at least four 
shapes. The obvious errors are retrievals #3 and #11. 

A simplified and common way of computing precision and 
recall was used to give a statistical evaluation of the corner-
guided PSM method, corner-guided Procrustes distance, and 
the traditional DP method. 

1) Precision is the percentage of qualifying shapes retrieved 
with respect to the total number of retrieved shapes. 

2) Recall is the percentage of qualifying shapes retrieved 
with respect to the total number of similar shapes in the 
database. 

Fig. 11. Precision-recall results. 

Because of the subjective nature of human vision, human rel­
evance was used to provide the ground truth in most shape re­
trieval result evaluations [25]. Three human subjects contributed 
their judgment to the evaluation of this spine X-ray retrieval sys­
tem. Due to the large volume of the database, it is very difficult 
to find all the similar shapes manually in the database for a spe­
cific query. Matches for all ten queries from half of the entire 
database were picked by human judges, and the assumption that 
there is equal number of similar shapes to a specific query in 
both halves of the database was made. 

The precision-recall results are plotted in Fig. 11. The hori­
zontal axis corresponds to the measured recall while the vertical 
axis corresponds to precision. The plot contains 15 points, which 
corresponds to 15 best matches and each point in the plot is the 
average of ten queries. The first point from the left of the plot 
corresponds to the average precision and recall values for the 
best match of the ten queries, while the second point from the 
left corresponds to the average precision and recall values for 
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the top two matches, and so on. Higher precision and higher 
recall represent better retrieval performance. The precision of 
the proposed corner-guided PSM using DP starts from 100% 
(successfully retrieves the top match for all ten queries) and 
drops down gradually as a larger number of matches are con­
sidered. For the ten queries we picked, the lowest precision of 
corner-guided PSM is still above 85%. And corner-guided PSM 
has a consistently higher precision than that of corner-guided 
Procrustes distance. Traditional DP, on the other hand, presents 
a very comparable precision with corner-guided PSM. 

The time efficiency of these three methods was also examined. 
First, nine points of each shape in the database can be precal­
culated and stored. Therefore, the time for 9-point localization 
does not contribute to the following processing times. The av­
erage processing times for corner-guided PSM, corner-guided 
Procrustes, and traditional DP are 42, 19, and 400 s, respectively. 
Thus, compared to the traditional DP, corner-guided PSM using 
the modified DP speeds up the retrieval process by approxi­
mately ten times. Although corner-guided PSM is slower than 
Procrustes, its average processing time is feasible for an image 
retrieval system. 

V. CONCLUSION 

A spine X-ray image retrieval system has been described in 
this paper. According to the 9-point model and the shape na­
ture of vertebral shapes, we introduced a corner-guided PSM 
method that uses a multiple open triangle shape representation 
method, and a modified DP for matching. This method is in­
variant to translation, scaling, rotation, and the starting point 
selection. Tested on retrieving 15 best matches for ten queries, 
this method has impressively high precision. With higher pro­
cessing efficiency than that of the traditional DP approach, 
corner-guided PSM is a very promising and practical method for 
spine shape retrieval. The corner-guided PSM processing speed 
can be further improved if implemented with a more efficient 
programming language and development environment than the 
Matlab. The weights of merging cost, length, and the angle are 
adjustable by the user during the retrieval process. However, 
the user usually does not have the knowledge of how differ­
ent weights can change the retrieval results. Thus, our future 
work includes building an interactive retrieval environment to 
allow the user to provide relevance feedback [32] so as to auto­
matically adjust the weights to refine the retrieval results. The 
sensitivity of the retrieval method on these weights can also be 
examined during the relevance feedback process. 
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